[32] Legramanti, S., Durante, D. and Alquier, P. [2024+]. Concentration of discrepancy-based approximate Bayesian computation via Rademacher complexity. Annals of Statistics. In press. |
[31] Durante, D., Pozza, F. and Szabo, B. [2024+]. Skewed Bernstein-von Mises theorem and skew-modal approximations. Annals of Statistics. In press. |
[30] Karling, M.J., Durante, D. and Genton, M.C. [2024]. Conjugacy properties of multivariate unified skew-elliptical distributions. Journal of Multivariate Analysis. 204, 105357. |
[29] Pavone, F., Legramanti, S. and Durante, D. [2024]. Learning and forecasting of age–specific period mortality via B–spline processes with locally–adaptive dynamic coefficients. Annals of Applied Statistics. 18, 1965–1987. |
[28] Anceschi, N., Fasano, A., Durante, D. and Zanella, G. [2023]. Bayesian conjugacy in probit, tobit, multinomial probit and extensions: A review and new results. Journal of the American Statistical Association. 118, 1451–1469. |
[27] Fasano, A., Durante, D. and Zanella, G. [2022]. Scalable and accurate variational Bayes for high-dimensional binary regression models. Biometrika. 109, 901–919. |
[26] Legramanti, S., Rigon, T., Durante, D. and Dunson, D.B. [2022]. Extended stochastic block models with application to criminal networks. Annals of Applied Statistics. 16, 2369–2395. |
[25] Cao, J., Durante, D. and Genton, M.G. [2022]. Scalable computation of predictive probabilities in probit models with Gaussian process priors. Journal of Computational and Graphical Statistics. 31, 709–720. |
[24] Fasano, A. and Durante, D. [2022]. A class of conjugate priors for multinomial probit models which includes the multivariate normal one. Journal of Machine Learning Research. 23, 1–26. |
[23] Legramanti, S., Rigon, T. and Durante, D. [2022]. Bayesian testing for exogenous equivalence structures in stochastic block–models. Sankhya A. 84, 108–126. |
[22] Fasano, A., Rebaudo, G., Durante, D. and Petrone, S. [2021]. A closed-form filter for binary time series. Statistics and Computing. 31, 1–20. |
[21] Rigon, T. and Durante, D. [2021]. Tractable Bayesian density regression via logit stick-breaking priors. Journal of Statistical Planning and Inference. 211, 131–142. |
[20] Legramanti, S., Durante, D. and Dunson, D.B. [2020]. Bayesian cumulative shrinkage for infinite factorizations. Biometrika. 107, 745–752. |
[19] Durante, D. and Guindani, M. [2020]. Bayesian methods in brain networks. Wiley StatsRef-Statistics Reference Online, 1–10. |
[18] Durante, D. [2019]. Conjugate Bayes for probit regression via unified skew-normal distributions. Biometrika, 106, 765–779. |
[17] Durante, D. and Rigon, T. [2019]. Conditionally conjugate mean-field variational Bayes for logistic models. Statistical Science, 34, 472–485. |
[16] Durante, D., Canale, A. and Rigon, T. [2019]. A nested expectation–maximization algorithm for latent class models with covariates. Statistics & Probability Letters, 146, 97–103. |
[15] Rigon, T., Durante, D. and Torelli, N. [2019]. Bayesian semiparametric modelling of contraceptive behavior in India via sequential logistic regressions. Journal of the Royal Statistical Society: A, 182, 225–247. |
[14] Canale, A., Durante, D. and Dunson, D. B. [2018]. Convex mixture regression for quantitative risk assessment. Biometrics, 74, 1331–1340. |
[13] Russo, M., Durante, D. and Scarpa, B. [2018]. Bayesian inference on group differences in multivariate categorical data. Computational Statistics & Data Analysis, 126, 136–149. |
[12] Canale, A., Durante, D., Paci, L., Scarpa, B. [2018]. Connecting statistical brains. Significance, 15, 38–40.
|
[11] Durante, D. and Dunson, D. B. [2018]. Bayesian inference and testing of group differences in brain networks. Bayesian Analysis, 13, 29–58.
|
[10] Durante, D., Dunson, D. B. and Vogelstein, J. T. [2017]. Nonparametric Bayes modeling of populations of networks. Journal of the American Statistical Association, 112, 1516–1530 [with discussion]. |
[9] Durante, D., Mukherjee, N. and Steorts, R. C. [2017]. Bayesian learning of dynamic multilayer networks. Journal of Machine Learning Research, 18, 1–29. |
[8] Wang, L., Durante, D., Jung, R. E. and Dunson, D. B. [2017]. Bayesian network-response regression. Bioinformatics, 33, 1859–1866. |
[7] Durante, D. [2017]. Invited discussion of "Sparse graphs using exchangeable random measures". Journal of the Royal Statistical Society: B, 79, 55–56.
|
[6] Durante, D. [2017]. A note on the multiplicative gamma process. Statistics & Probability Letters, 198–204.
|
[5] Durante, D., Paganin, S., Scarpa, B. and Dunson, D. B. [2017]. Bayesian modelling of networks in complex business intelligence problems. Journal of the Royal Statistical Society: C, 66, 555–580. |
[4] Durante, D. and Dunson, D. B. [2016]. Locally adaptive dynamic networks. Annals of Applied Statistics. 10, 2203–2232.
|
[3] Durante, D. and Dunson, D. B. [2014]. Nonparametric Bayes dynamic modelling of relational data. Biometrika, 101, 883–898. |
[2] Durante, D. and Dunson, D. B. [2014]. Bayesian dynamic financial networks with time-varying predictors. Statistics & Probability Letters, 93, 19–26. |
[1] Durante, D., Scarpa, B. and Dunson, D. B. [2014]. Locally adaptive factor processes for multivariate time series. Journal of Machine Learning Research, 15, 1493–1522. |